Progetto

L'obiettivo del Progetto di ricerca riguarda lo sviluppo di materiali innovativi per la conversione dell'anidride carbonica a fuel rinnovabili utilizzando sistemi elettrocatalitici e fotoelettrocatalitici, sfruttando le energie rinnovabili per la conversione di un gas serra. In particolare, il progetto prevede la produzione, l'ottimizzazione e lo studio di materiali a base di layered double hydroxides (LDH) e l'identificazione e quantificazione della loro capacità di interazione con l'anidride carbonica.

Le proprietà uniche di questi materiali (LDH) nell'adsorbimento di CO2 (legate alla basicità e all'elevato tasso di scambio dinamico di CO2 all'interno dello strato intermedio) e la loro flessibilità di preparazione possono rappresentare una svolta per i sistemi di conversione della CO2. Pertanto, il progetto mira a studiare l'interazione tra CO2 e LDH e a sviluppare catalizzatori e processi per la riduzione della CO2 a fuel tramite riduzione elettro e fotoelettrocatalitica della CO2 per la produzione di combustibili verdi a bassa temperatura. Il progetto apre anche la strada alla conversione della CO2 in un flusso diluito come quello derivato dalla cattura diretta dell'aria. Lo scopo del progetto è i) approfondire lo studio dell'interazione e della reattività della CO2-materiale, ii) utilizzare la conoscenza e le proprietà uniche dell'LDH per sviluppare catalizzatori avanzati per i tre processi. iii) definire le condizioni di processo per massimizzare la produzione di combustibile iv) dimostrare la possibilità di convertire la CO2 durante la cattura diretta dell'aria.

Attività

Le attività del progetto di ricerca ricadono in tre aree: (i) la sintesi di materiali basati su LDH; (ii) la caratterizzazione avanzata dei materiali e della loro interazione con l'anidride carbonica; (iii) lo studio dei processi catalitici di elettroriduzione e fotoelettroriduzione catalitica della CO2. In particolare, la sintesi sfrutterà la versatilità dei materiali identificati in termini di composizioni e proprietà.

Le LDH, materiali composti da nanostrati di idrossido cationico M²⁺ e M³⁺ interdispersi alternati a strati anionici, sono infatti sistemi molto versatili e possono essere composti dalla maggior parte dei metalli di transizione M²⁺ e M³⁺ (con riportati anche alcuni M⁺ e M⁴⁺) e anioni (solitamente CO₃²⁻, ma con la possibilità di inserire anche anioni di diversa natura e grandi dimensioni). La sintesi sfrutterà questa caratteristica per sviluppare materiali a diversa composizione anionica e cationica al fine di aumentare l'interazione tra LDH e CO2. Inoltre le strutture verranno ulteriormente modificate al fine di produrre degli ossidi misti per calcinazione e di inserire nanoparticelle metalliche nella struttura, in corrispondenza dei siti di interazione con la CO2. n'elevata area superficiale degli ossidi misti derivati ottenuti mediante calcinazione e riduzione di LDH in ossido e nanoparticelle metalliche. Nello specifico, verranno utilizzati, Cu eventualmente combinato o parzialmente sostituito con Fe, Ni o Ga. La caratterizzazione dei materiali si concentrerà sullo studio della morfologia del materiale, della sua struttura e composizione e di come queste interagiscano con l'anidride carbonica con particolare attenzione all'identificazione dei siti di assorbimento della CO2 superficiale e negli strati. Infine l'attività prevede la conduzione di test elettrocatalitici e fotoelettrocatalitici per la conversione della CO2 utilizzando elettrodi prodotti con i materiali sintetizzati e l'analisi dei prodotti ottenuti in fase liquida e in fase gas nonché l'analisi ed elaborazione dei dati.

L'attività di ricerca permetterà al candidato di guadagnare conoscenze nel campo della sintesi avanzata di materiali inorganici utilizzabili come catalizzatori e precursori di catalizzatori. Permetterà inoltre di conoscere e apprendere tecniche di caratterizzazione quali XRD, BET, IR, Raman, SEM-EDS e TEM. Infine permetterà al candidato di apprendere le metodologie per la conduzione di test catalitici in sistemi elettrochimici e fotoelettrochimici, nonché l'analisi critica dei dati e a loro rielaborazione.